
Introduction

Mathematics is a fundamental tool used to explore and
understand the world around us. Despite its explanatory
power, which elucidates the most complex of
relationships, the relevance of mathematics is often
missing from mathematics education. As we seek to
bring context and purpose to the classroom, connecting
our students to intriguing, relevant examples of
mathematics in action, the shared interests of biology,
geometry, and algebra emerge as natural partners.
Geometric variability in biological structures determines
the ecological performance (i.e. resource acquisition) of
individuals possessing those structures, all of which is
described by algebraic expressions. In this article we
examine the issue of biological scaling and the manner
in which geometric relationships within organisms
influence how and where they exist, and the manner in
which they evolve.

Biological scaling is the study of size-related effects on
the structure and function of organisms (Willmer et al.,
2005). As simple as it may sound, increasing in size
causes significant changes in the form, function, and
physiology of organisms due to the different rates at
which linear (x), area (x2), and volume (x3) functions
change. Among the most important of scaling
relationships is the surface area-to-volume ratio of
individual cells, the basic units of life (Raven et al.,
2014). The surface of a cell is the area over which it
exchanges materials with the environment (resources in,
wastes out), whereas its internal volume is the physical
space in which those materials are consumed and
produced. Because volume, a cubic function, grows at a
faster rate than area, a square function, larger cells have
lower surface area-to-volume ratios, and therefore
operate at a physiological deficit; they have relatively
less surface area over which to obtain and dispose of
resources and wastes, and a relatively larger volume in
which those materials are consumed and produced. For
aerobic organisms (those which rely upon oxygen for
respiration), this surface area-to-volume issue constrains
individual cells to be no more than 1 mm in diameter, as
those larger than 1 mm cannot distribute oxygen quickly

enough to sustain the metabolic needs of the cell, leading
to an ‘anoxic core’ within the cell (Willmer et al., 2005).
Moving this relationship from the microscopic to the
macroscopic, have you ever wondered why kids are more
resilient to falling than adults? The surface area-to-
volume ratio strikes again! Adults have relatively more
volume (and therefore mass) than kids, and relatively
less cross-sectional area to their bones. This unfortunate
pairing results in greater bone stress (body weight/bone
cross-sectional area) and greater likelihood of failure in
older people. We explore a similar relationship between
geometry and biology, with an extension to physics, in
the intriguing case of water striders, insects that spend
their entire lives on the edge of water and air (Fig. 1). In
addition to engaging students in an exploration of the
biological significance of scaling, this lesson also
addresses learning objectives related to perimeter and
volume formulas, equation manipulation, and units of
measure.

Water Striders

Of the approximately 1700 species of water striders
(insects of the family Gerridae), 90% live on freshwater
and 10% on salt water (Lancaster and Briers, 2008).
They have three pairs of legs, the first of which is
engaged in communication by making and detecting
vibrations at the water’s surface, whereas the second and
third pairs of legs are for propulsion and steering
respectively (Williams and Feltmate, 1992).

Fig. 1 Water strider (Gerris spp.)
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The ability of a water strider to exist at the water’s
surface is based on the balance of forces between its body
weight and the surface tension force exerted by water.
The ratio of these forces, known as the Baudoin Number
(Ba), has been pivotal in the evolution of this enigmatic
group of insects. Body weight is the product of body
mass (m) and gravitational acceleration (g), whereas the
surface tension force is the product of the surface tension
of water (σ) and the contact perimeter over which that
force acts (P) (Baudoin, 1955; Hu et al., 2003).

The only way to remain at the water’s surface is to have
a Baudoin Number Ba ≤ 1.0, which occurs in insects such
as water striders (Hu et al., 2003). Mass is the product of
volume and density (m = Vd), allowing the Baudoin
number to be expressed as:

As such, the balancing act employed by water striders is
dependent on their geometry, which determines both
their body volume and the contact perimeter between
their legs and the water they so precariously live upon.
Body mass is a volume function and increases at a faster
rate than body area or perimeter. Therefore, geometry
will ultimately limit the size that water striders can
attain before crossing the critical threshold when the
Baudoin Number exceeds 1.0, causing them to sink
through the water’s surface.

The key inequality , which can be written as
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Given the constants of gravitational acceleration
(0.0098 mm/ms2; Walker, 2009) and the surface tension
of water (0.000072 N/mm in freshwater at 25°C;
Vargaftik et al., 1983), as well as the density of the
water strider approximated from scientific literature
(0.0012 g/mm3; Vincent and Wegst, 2004), the relation-
ship between the volume of the water strider’s body and
its contact perimeter with the water’s surface can be
further examined:

A geometric model of a water strider of average size was
developed using a combination of standard geometries
(hemisphere, cone, and cylinders) based on measure-
ments taken from scientific literature (Fairbairn,
2005).

The volume of this water strider is approximately
7.6086 mm3, as can be determined from the given
measurements (note that the volume of the legs on both
sides of the body must be accounted for). The contact
perimeter between the water strider’s legs and the
water’s surface is approximately 24.4800 mm. This
perimeter is the equivalent of that of a rectangle passing
through the cylinders comprising the tarsal segments of
the water strider’s leg (segment 3), as these are the only
segments in contact with the water. The length of the
tarsal segments is given and the diameter of these
segments can be determined from their radii (note
again that the legs on both sides of the body must be
accounted for). The volume to contact perimeter ratio

for this water strider is which is≈7.6086
24.4800

0.3108 mm ,2
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Fig. 2 Geometric model of a generalized water strider with dimensions of all body segments
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Assuming isometric growth, wherein the dimensions of a
body increase in direct proportion to each other (e.g.
two 30/60/90 triangles that differ in their side lengths),
let’s consider the consequences of doubling each
dimension of the water strider’s body from our example,
and recalculating the volume-to-contact perimeter ratio.
Isometric growth is the default assumption for studies
of biological scaling, as it entails a consistent pattern of
development which has not been acted upon by factors
such as natural selection. Algebraically, this doubling of
dimensions has the effect of multiplying the original
volume by 23, and the original perimeter by 2. To take an
example, the head of the water strider is modelled by a
hemisphere . Doubling has the effect of
changing the formula to

Likewise, both the radius and height of the cylinder
representing the body are doubled such that
becomes

Adding these two parts together gives us

Continuing this same process to include the tail and leg
volumes gives us a new total volume of the water strider
equal to 23 multiplied by the original total volume. The
contact perimeter, on the other hand, is simply
multiplied by a factor of 2, as it is one-dimensional. The
new ratio is

Doubling the size yet again (i.e. increasing the original
size of the water strider by a factor of four) results in a
ratio of

This value is close to our threshold volume-to-contact
perimeter ratio of 6.1225 mm2, suggesting that a
quadrupling of size is approximately as large as our
water strider can get. In fact, the actual size limit can be
found solving for the size multiplier such that

Solving for z determines that the maximum size a water
strider is capable of attaining is 4.43831 times larger
than the original water strider in our example.
Incidentally, this is approximately the size of the world’s
largest water strider Gigantometra gigas, which employs
the additional trick of allometric (disproportionate)
growth of its legs such that they have a larger contact
perimeter than would be expected based on the size of its

V r h2= π

body (Tseng and Rowe, 1999). Thus, it is apparent that
the geometry of biology dictates how large and the
manner in which water striders can grow, and how far
they can push the limits of physics!

In conclusion, we comment that providing context and
meaning for mathematical concepts draws students into
the learning process. Biological scaling is but one
example of the fundamental role mathematics plays in
the structure of nature. For more integrated lessons, visit
our website:

http://utweb.ut.edu/rwaggett/science-math-master.
html.
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